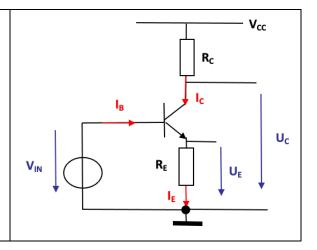
Exercices d'électronique, Introduction bipolaire

Exercice 1

Soit la structure de la figure ci-contre. Sachant que VBE = Uj, calculer les courants IB, IE et IC, ainsi que les tensions VE et VC.


Quelle est le mode de fonctionnement du transistor ?

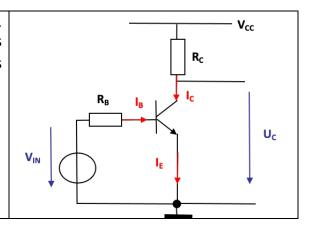
Valeurs numériques :

$$V_{IN} = 3.4 \text{ V } U_{j} = 0.7 \text{ V}$$

$$R_C = 4.7 \text{ k}\Omega$$
, $R_E = 2.7 \text{ k}\Omega$

$$\beta = 200 \quad V_{CC} = 10 \text{ V}$$

Exercice 2


Soit la structure de la figure suivante. Sachant que $V_{BE} = U_j$, calculer les courants I_B et I_C , ainsi que les tensions V_B et V_C .

Valeurs numériques :

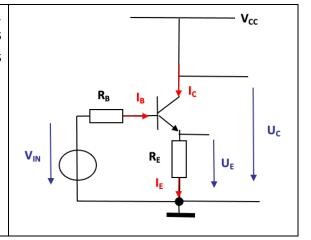
$$V_{IN} = 3.4 \text{ V}$$
 $U_{\dot{I}} = 0.7 \text{ V}$

$$R_C = 4.7 \text{ k}\Omega$$
, $R_B = 2.7 \text{ k}\Omega$

$$\beta = 200$$
 $V_{CC} = 10 V$

Exercice 3

Soit la structure de la figure suivante. Sachant que $V_{BE} = U_j$, calculer les courants I_B et I_C , ainsi que les tensions V_B et V_E .


Valeurs numériques :

$$V_{IN} = 5 V U_{j} = 0.7 V$$

$$R_E = 1 k\Omega$$
, $R_B = 10 k\Omega$

$$\beta = 200$$
 $V_{CC} = 10 V$

Le transistor peut-il saturer ?

Si vous avez du temps, refaire les exercices avec V_{IN} variant de 0 à 5V. Analyser $V_C = f(V_{IN})$ et $V_E = f(V_{IN})$ lorsque cela se justifie